Einführungspraktikum WS 2017/18

Peter Schäfer peter.schaefer@physik.hu-berlin.de http://roe10.physik.hu-berlin/Grundpraktikum

> Institut für Physik Structure Research & Electron Microscopy

> > 22. Februar 2018

Inhalt

statistische Grundlagen

Fehlerfortpflanzung

Ausgleichsrechnung

Weiterführende Informationen:

http://roe10.physik.hu-berlin.de/Grundpraktikum http://poeple.physik.hu-berlin.de/~schaefer/Grundpraktikum

Grundsätzliches und Allgemeine Hinweise

Reproduzierbarkeit des Experimentes \Rightarrow Reproduzierbarkeit der Auswertung $\downarrow \downarrow$

- Wiederholung der Auswertung muss zum gleichen Ergebnis führen
- ▶ Anwendung auf ähnliche Daten muss zu vergleichbarem Ergebnis führen
- der Ablauf der Auswertung muss nachvollziehbar und dokumentierbar sein

- Ausführliche Dokumentation aller Funktionen und Prozeduren
- Möglichkeit zur Erstellung und Abarbeitung von Befehlslisten
- Fehlerfrei bzw. Dokumentation bekannter Fehler (Open Source)

Versuch F3: experimentelle Bestimmung der Erdbeschleunigung

Möglichkeiten zur Bestimmung der Erdbeschleunigung g:

- statische Messung:
 - ▶ aus Kraft und Masse $F = g m \Rightarrow g = \frac{F}{m}$
- dynamische Messung:
 - ▶ aus Fallzeit: $t = \sqrt{\frac{2h}{g}} \Rightarrow g = \frac{2h}{t^2}$
 - ▶ aus Periodendauer eines Pendels: $T = 2\pi \sqrt{\frac{l_r}{g}} \Rightarrow g = 4\pi^2 \frac{l_r}{T^2}$

erfordert unabhängige Messung zweier Größen z.B. von I_r und T

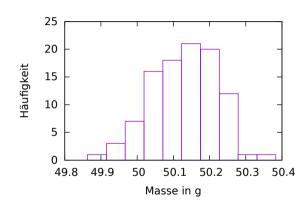
Messen bedeutet: Vergleichen mit einem Normal ⇒ Messunsicherheit

mathematische Statistik

Histogramm - Wahrscheinlichkeitsdichtefunktion

- Eigenschaft einer sehr großen Gruppe ähnlicher Objekte (Grundgesamtheit)
 - Körpergröße von Mitteleuropäer
 - ▶ Die Masse der Massestücke aus F4
 - Wiederholungen einer Messung
- ▶ Entnahme einer Stichprobe (Umfang = n)
- ► Einteilung in *N* Intervalle
 - Anleitung: $N = 5 \log_{10} n$
 - Sturges: $\Delta x = \frac{x_{max} x_{min}}{1 + 3.322 \log_{10} n}$
 - Scott: $\Delta x = 3.5 \,\widehat{\sigma} \, n^{-1/3}$
- ightharpoonup Bestimmung der Anzahl h_i je Intervall

Wahrscheinlichkeitsdichte



Häufigkeit von Massestücken

wichtige Wahrscheinlichkeitsdichtefunktionen

WDF (probability density function pdf)

► Gleichverteilung:
$$f(x) = \begin{cases} \frac{1}{b-a} & \text{wenn } a \leq x \leq b \\ 0 & \text{sonst} \end{cases}$$

Normalverteilung:
$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$$
 (Grenzwertsatz)

Poisson-Verteilung:
$$f(k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

- $k \in \mathbf{N_0}$ $\lambda \in \mathbf{R^+} \Rightarrow$ wichtig für Zählergebnisse
- t-Verteilung
- F-Verteilung
- $\sim \chi^2$ -Verteilung

alle Wahrscheinlichkeitsdichtefunktionen sind normiert $\Rightarrow \int_{-\infty}^{\infty} f(x) dx = 1$

Histogramm - Wahrscheinlichkeitsdichtefunktion

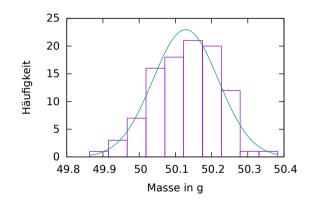
- ► Annahme einer Gauß-Verteilung
- lacktriangle Schätzung von μ und σ aus den Daten

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\widehat{\sigma} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \widehat{\mu})^2}$

Fläche unter dem Histogramm $\Delta x \cdot n$

$$y(x) = \mathbf{A}_{Histogramm} \mathbf{WDF}$$

= $\frac{\Delta x \, n}{\widehat{\sigma} \sqrt{2 \, \pi}} \, e^{-\frac{1}{2} \left(\frac{x - \widehat{\mu}}{\widehat{\sigma}} \right)^2}$



Summenhäufigkeit - Wahrscheinlichkeitsverteilungsfunktion

Summenhäufigkeit:

$$\mathrm{sh}_i = \sum_{j=1}^i h_j$$

▶ Wahrscheinlichkeitsverteilungsfunktion: $F(x) = \int_{-\infty}^{\infty} f(t) dt$ (cumulative distribution function cdf)

$$\downarrow$$

- ▶ Wahrscheinlichkeit, dass x < z \Rightarrow $\mathbf{P}(x < z) = F(z)$
- ▶ Wahrscheinlichkeit, dass x in [a:b] \Rightarrow $P(a \le x \le b) = F(b) F(a)$

$$\Downarrow$$

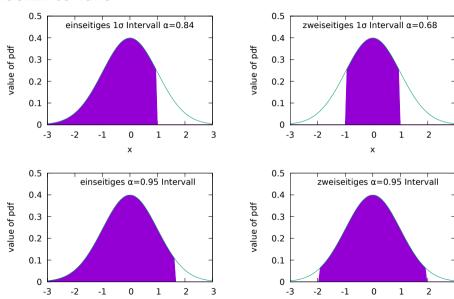
Gauß-Verteilung:
$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^2} dt = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

 $\Phi(x)$ Wahrscheinlichkeitsverteilungsfunktion der Standardnormalverteilung

$$P(-\sigma \le x - \mu \le \sigma) = \Phi(1) - \Phi(-1) = 0.6827$$

 $P(-2\sigma \le x - \mu \le 2\sigma) = \Phi(2) - \Phi(-2) = 0.9545$

Konfidenzintervalle



х

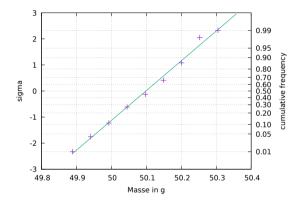
口 > 《圖》《意》《意》

Summenhäufigkeit - Wahrscheinlichkeitsverteilungsfunktion

- relative Summenhäufigkeiten $\frac{\mathrm{sh}_i}{n}$
- ► Annahme einer Gauß-Verteilung
 - "Wahrscheinlichkeitspapier"
 - ⇒ Skalierung der y-Achse mit Φ
 - \Rightarrow Anwendung von Φ^{-1} auf alle y-Werte
 - $\Rightarrow \Phi(\frac{x-\mu}{\sigma})$ wird als Gerade dargestellt

$$y = a \cdot x + b \implies \widehat{\mu} = -\frac{b}{a} \text{ und } \widehat{\sigma} = \frac{1}{a}$$

• Berechnung von $\widehat{\mu}$ und $\widehat{\sigma}$ aus den sh_i



statistisch begründete, und damit objektive Beurteilung der Übereinstimmung

Messabweichung

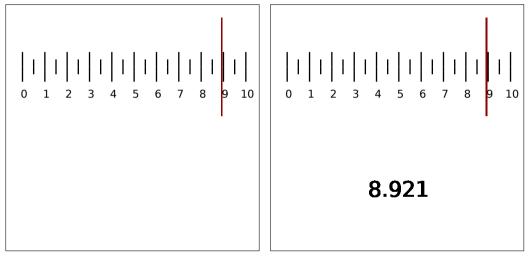
- Messabweichung = Messwert wahrer Wert
- ▶ 2 unterschiedliche Ursachen $u = u_{sys} + u_z$
- ▶ viele Einflußfaktoren mit unbekannter WDF
- Zentraler Grenzwertsatz der Stochastik

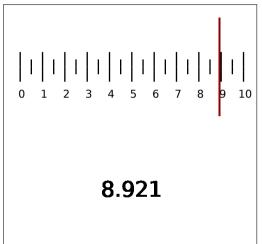
Die Summe einer großen Zahl von unabhängigen Zufallsvariablen nähert sich asymptotisch einer stabilen Verteilung. Bei endlicher und positiver Varianz der Zufallsvariablen ist die Summe annähernd normalverteilt.

- ⇒ Sonderstellung der Normalverteilung.
- keine systematischen Messabweichungen
- \Rightarrow Erwartungswert $E[\mu_u] = 0$
- \Rightarrow zufällige Messabweichungen können als $\mathscr{N}(0,\sigma^2)$ betrachtet werden

$$\Rightarrow \widehat{\mu_u} = \frac{1}{n} \sum_{i=1}^n u_i \approx 0$$

Versuch F1





zufällige Messunsicherheit (u_i) = Ableseunsicherheit = abgelesener Wert - wahrer Wert

Versuch F1 - Auswertung

- ▶ Berechnung der Messabweichungen $u_i = x_{abgelesen} x_{wahr}$
- ▶ Bestimmung der Zahl n^+ und n^- ⇒ Vorzeichentest $|n^+ n^-| < \sqrt{n^+ + n^-}$ Problem: Behandlung von Nulldifferenzen
- Festlegung der Klassenanzahl m und der Klassengrenzen $u_{min}\cdots u_{max}$ Bestimmung der Häufigkeiten h_j , $j=1\dots m\Rightarrow$ Zeichnen des Histogramms
- ▶ Berechnung der Schätzwerte von Mittelwert $\widehat{\mu_u}$ und Standardabweichung $\widehat{\sigma_u}$ Zeichnen der zugehörigen Normalverteilung
- ▶ Berechnung der relativen Summenhäufigkeiten $\frac{\sin_j}{n}$, $j=1\dots m$ Eintragen auf Wahrscheinlichkeitspapier, Bestimmung von $\widehat{\mu_u}$ und $\widehat{\sigma_u}$ aus der Geraden
- u_i Messunsicherheit \Longrightarrow Erwartungswert von $E[\mu_u] = 0$!!!!

Inhalt

statistische Grundlagen

Fehlerfortpflanzung

Ausgleichsrechnung

Weiterführende Informationen:

http://roe10.physik.hu-berlin.de/Grundpraktikum http://poeple.physik.hu-berlin.de/~schaefer/Grundpraktikum

direkte Messung einer physikalischen Größe

Beispiel: Messung der Zeit t für k Schwingungen eines Pendels

- ▶ n Wiederholungen der Messung unter gleichen Bedingungen
- ▶ Mittelwert \Rightarrow Schätzung des "Wahren Wertes" $\overline{t} = \widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} t_i$
- zufällige Fehler
 - Standardabweichung = $\sqrt{\text{Varianz}} = \sqrt{\widehat{\sigma^2}} \Rightarrow \text{Unsicherheit der Einzelmessung}$

$$s = \widehat{\sigma} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (t_i - \widehat{\mu})^2}$$

▶ Vertrauensbereich \Rightarrow Unsicherheit des Mittelwertes $\Rightarrow u^z$

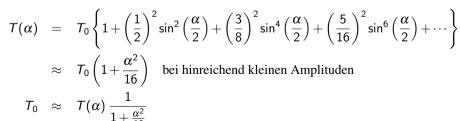
$$\mathrm{v}(1-lpha)=\pm\,t_{n-1}(1-rac{1}{2}lpha)rac{\mathrm{s}}{\sqrt{n}}$$
 Signifikanzniveau $=1-lpha$

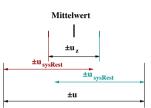
$$v(68.27\%) = \pm \frac{s}{\sqrt{n}}$$
 Intervall $[\pm 1\sigma]$, da $t_{n-1}(0.84135) \approx 1$ für $n \ge 10$

direkte Messung einer physikalischen Größe

systematische Fehler

- systematische Restfehler (nicht mehr behebbarer Restfehler)
 - oftmals gegeben als $u^{sysRest} = a + b \cdot Messwert$
 - ► für jedes Messgerät verschieden ⇒ Zufallsgröße ⇒ $u^{\mathrm{gesamt}} = u^z + u^{\mathrm{sysRest}}$
 - Verschiedene Messungen mit gleichem Gerät
 ⇒ getrennte Fehlerfortpflanzung für u^z und u^{sysRest}
- ► systematische Fehler (bekannte Physik) ⇒ Korrektur Beispiel: Amplitudenabhängigkeit der Periodendauer eines Pendels





Fehlerfortpflanzung

Berechnung einer physikalischen Größe aus mehreren Messwerten

Gauß'sches Fehlerfortpflanzungsgesetz

- ▶ skalare Größe $y \equiv y(\mathbf{x}) = y(x_1, x_2, ..., x_n)$ Funktion des n dimensionalen Vektors \mathbf{x}
- Für die Varianz von $y(\mathbf{x})$ gilt:

$$Var[y(\mathbf{x})] = E\left[\left(y(\mathbf{x}) - E[y(\mathbf{x})]\right)^{2}\right] \simeq E\left[\left(y(\mathbf{x}) - y(\bar{\mathbf{x}})\right)^{2}\right]$$

- ▶ die Unsicherheit $u_{x_i} = x_i \bar{x_i}$ mit $\bar{x_i} = E[x_i]$ sei klein
- \Rightarrow Abbruch der Taylorentwicklung von $y(\mathbf{x})$ in der Umgebung des Punktes $\mathbf{x} = \bar{\mathbf{x}}$ nach der ersten Ordnung

$$y(\mathbf{x}) = y(\bar{\mathbf{x}}) + \sum_{i=1}^{n} (x_i - \bar{x}_i) \left. \frac{\partial y(\mathbf{x})}{\partial x_i} \right|_{\mathbf{x} = \bar{\mathbf{x}}}$$

Herleitung Gauß'sches Fehlerfortpflanzungsgesetz

 \Rightarrow damit folgt für $(u_y)^2 = \text{Var}[y(\mathbf{x})]$

$$\operatorname{Var}[y(\mathbf{x})] = \operatorname{E}\left[\left(\sum_{i=1}^{n} (x_{i} - \bar{x}_{i}) \left. \frac{\partial y(\mathbf{x})}{\partial x_{i}} \right|_{\mathbf{x} = \bar{\mathbf{x}}}\right)^{2}\right]$$

$$(u_{y})^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} \left. \frac{\partial y(\mathbf{x})}{\partial x_{j}} \right|_{\mathbf{x} = \bar{\mathbf{x}}} \operatorname{E}\left[\left(x_{i} - \bar{x}_{i}\right)\left(x_{j} - \bar{x}_{j}\right)\right] \left. \frac{\partial \theta(\mathbf{x})}{\partial x_{j}} \right|_{\mathbf{x} = \bar{\mathbf{x}}}$$

Elemente der Kovarianzmatrix Σ des Vektors x.

$$\mathrm{E}\left[\left(x_{i}-\bar{x_{i}}\right)\left(x_{j}-\bar{x_{j}}\right)\right]=\sigma_{i,j}$$

⇒ allgemeine Gauß'sche Fehlerfortpflanzungsgesetz

$$(u_y)^2 = \sum_{i=1}^n \sum_{j=1}^n \frac{\partial y(\mathbf{x})}{\partial x_i} \bigg|_{\mathbf{x} = \bar{\mathbf{x}}} \sigma_{i,j} \frac{\partial y(\mathbf{x})}{\partial x_j} \bigg|_{\mathbf{x} = \bar{\mathbf{x}}}$$

Herleitung Gauß'sches Fehlerfortpflanzungsgesetz

- ► Sonderfall: *x_i* sind unkorreliert
 - $\sigma_{i,j} = \operatorname{Cov}[x_i, x_i] = 0 \text{ für } i \neq j$

 - Σ ist eine Diagonalmatrix
- ⇒ einfache Gauß'sche Fehlerfortpflanzungsgesetz

$$(u_y)^2 = \sum_{i=1}^n \left(\left. \frac{\partial y(\mathbf{x})}{\partial x_i} \right|_{\mathbf{x} = \overline{\mathbf{x}}} u_{x_i} \right)^2$$

Voraussetzungen sind meistens gegeben

Anwendung des allgemeinen Gauß'sche Fehlerfortpflanzungsgesetz notwendig:

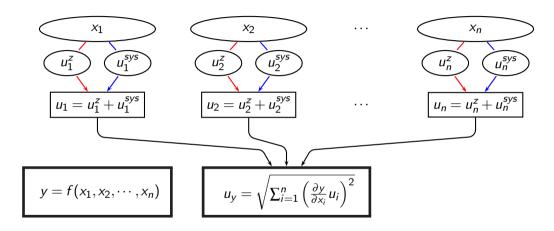
• wenn die Größen x_i aus einer statistischen Auswertung folgen z.B. Achsenabschnitt und Anstieg aus einem Geradenausgleich dann gilt $\sigma_{i,j} \neq 0$

Fehlerfortpflanzung

Unsicherheit der aus mehreren Messwerten berechneten Größe $y = f(x_1, x_2, \dots, x_n)$ x_i mit unterschiedlichen Messgeräten gemessen

- ► Gauß: $u_y^z = \sqrt{\sum_{i=1}^n \left(\frac{\partial y}{\partial x_i} u_{x_i}\right)^2}$
- ▶ aus Messungen bestimmt: $I = \overline{I}$, u_I^z und u_I^{sysRest} , gesucht u_I
 - $\Rightarrow u_I = u_I^z + u_I^{\text{sysRest}}$
- ightharpoonup aus Messungen bestimmt: $t=\bar{t}$, u_t^z und u_t^{sysRest} , gesucht: $T=\frac{1}{k}t$ und u_T
 - $\Rightarrow u_T = \frac{1}{k}u_t$ mit $u_t = u_t^z + u_t^{\text{sysRest}}$
- \blacktriangleright I und T aus Messung mit zwei verschiedenen Messgeräten, gesucht: g und u_g
 - $\Rightarrow g = 4\pi^2 \frac{I}{T^2}$ mit u_g nach Gauß aus u_{l_r} und u_T

verschiedene Messgerät (u_i^{sys} unkorreliert)



Fehlerfortpflanzung

Unsicherheit der aus mehreren Messwerten berechneten Größe $y = f(x_1, x_2, \cdots, x_n)$

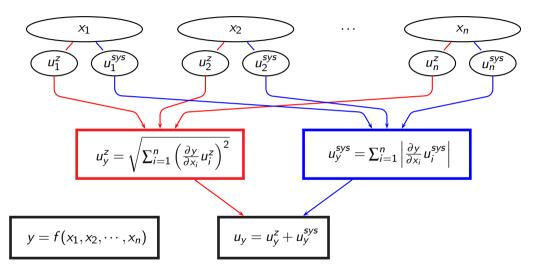
ightharpoonup d und h aus Messung mit gleichem Messgerät, gesucht μ , u_{μ}

$$\Rightarrow \mu = \frac{J}{m} = \frac{1}{12} \left(h^2 + \frac{3}{4} d^2 \right)$$

- lacksquare u_y^z nach Gauß $u_y^z = \sqrt{\sum_{i=1}^n \left(rac{\partial y}{\partial x_i} u_{x_i}^z
 ight)^2}$ aus u_h^z und u_d^z
- systematischer Restfehler $u_y^{\text{sysRest}} = \sum_{i=1}^n \left| \frac{\partial y}{\partial x_i} u_{x_i}^{\text{sysRest}} \right|$ aus u_h^{sysRest} und u_d^{sysRest}
- \Rightarrow Gesamte Unsicherheit $u_v = u_v^z + u_v^{\text{sysRest}}$

(Michael Grabe "Grundriss der Generalisierten Gauß'schen Fehlerrechnung" Springer **2011**)

gleiches Messgerät (u_i^{sys} korreliert)



Runden nach DIN 1333

Die Zahl der signifikanten Stellen wird durch den Wert der Unsicherheit bestimmt.

Runden der Unsicherheit:

Wenn die erste von 0 verschiedene Stelle

$$eine \left\{ \begin{array}{cc} 1 & oder & 2 \\ 3 & bis & 9 \end{array} \right\} \ ist, \ dann \ wird \ \left\{ \begin{array}{cc} in \ der \ Stelle \ rechts \ daneben \\ in \ dieser \ Stelle \end{array} \right\} \ gerundet.$$

Die Unsicherheit wird dabei immer aufgerundet! (DIN 1333 Abs 6.1)

Runden des Schätzwertes:

Der Schätzwert wird in der gleichen Stelle gerundet, wie die Unsicherheit.

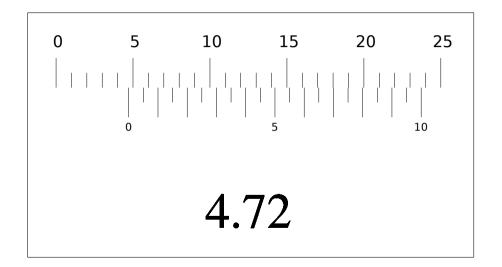
Wenn die Ziffer rechts neben dieser Stelle

$$\text{eine} \left\{ \begin{array}{ll} 0 & \text{bis} & 4 \\ 5 & \text{bis} & 9 \end{array} \right\} \text{ ist, dann wird der Schätzwert } \left\{ \begin{array}{ll} \text{abgerundet} \\ \text{aufgerundet} \end{array} \right.$$

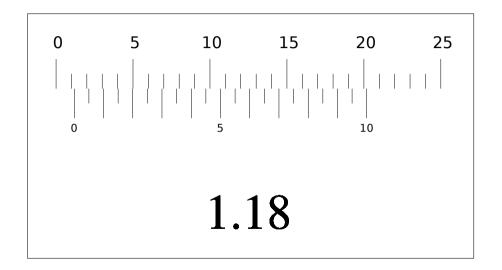
Nach DIN 1333 sind im Ergebnis nur die signifikanten Ziffern (erste von Null verschiedene Stelle bis zur Rundungsstelle) anzugeben - das Auffüllen mit Nullen ist unzulässig. Dazu ist das Komma soweit nach links zu verschieben, bis es unmittelbar rechts von der Rundungsstelle steht. Danach ist das Ergebnis durch Multiplikation mit der entsprechenden Zehnerpotenz zu korrigieren.

Deutsches Institut für Normung e.V., Zahlenangaben, DIN 1333 (1992), Beuth Verlag GmbH, Berlin https://www.beuth.de/de/norm/din-1333/1819868

Ablesung Nonius (z.B. Messschieber, Winkelskala am Spektrometer)



Ablesung Nonius (z.B. Messschieber, Winkelskala am Spektrometer)



Versuch F3 - Physik

mathematisches Pendel, Massepunkt $I \rightarrow Abstand Massepunkt$

$$T_{0} = 2\pi \sqrt{\frac{l}{g}}$$
Massepunkt \Rightarrow starrer Körper \Rightarrow

$$T_{0} = 2\pi \sqrt{\frac{l}{g} \left(1 + \frac{\mu}{l^{2}}\right)}$$
Massepunkt \Rightarrow Kugel $\mu = \frac{2}{5}r^{2}$

$$T_{0} = 2\pi \sqrt{\frac{l}{g} \left(1 + \frac{2}{5}\frac{r^{2}}{l^{2}}\right)}$$

physikalisches Pendel, starren Körper $I \rightarrow$ Abstand Schwerpunkt

$$T_0 = 2\pi \sqrt{\frac{J_s + m I^2}{m I g}}$$

$$\downarrow I_r = \frac{J_s + m I^2}{m I}$$

$$= \frac{\frac{J_s}{m} + I^2}{I}$$

$$\text{mit } \mu = \frac{J_s}{m}$$

$$= I + \frac{\mu}{I} = I \left(1 + \frac{\mu}{I^2}\right)$$

Versuch F3 - Teil 1

- 1. Bestimmung der Periodendauer T und der Unsicherheit u_T (aus jeweils 10 Wiederholungen, konstante Amplitude, größte mögliche Fadenlänge)
 - Messung der Zeit für 1 Schwingungsperiode
 - Messung der Zeit für 20 Schwingungsperioden (Start, Stopp am Umkehrpunkt)
 - Messung der Zeit für 20 Schwingungsperioden (Start, Stopp am Nulldurchgang)
 - Messung der verwendeten Amplitude für Amplitudenkorrektur
- 2. Messung der Fadenlänge / (Abstand Schwerpunkt Aufhängung) und Fehlerabschätzung
- 3. Berechnung der Größe $\mu = \frac{J}{m} = \frac{1}{16}d^2 + \frac{1}{12}h^2$ (Rotation um Querachse) und u_{μ} des zylinderförmigen Pendelkörpers
 - lacktriangle Messung von d und h des Pendelkörpers an > 10 verschiedenen Stellen
- 4. Berechnung von g und u_g aus den korrigierten Werten
 - $ightharpoonup T_0$ und u_{T_0} (Amplitudenkorrektur)
 - $ightharpoonup I_r$ und u_{I_r} (Korrektur starrer Körper)

Inhalt

statistische Grundlagen

Fehlerfortpflanzung

Ausgleichsrechnung

Weiterführende Informationen:

http://roe10.physik.hu-berlin.de/Grundpraktikum http://poeple.physik.hu-berlin.de/~schaefer/Grundpraktikum

Versuch F3 - Teil 2

Hauptproblem bei Bestimmung von g: Messung von $l \Rightarrow$ Messung von T_0 als f(l)

- schrittweise Verkürzung der Pendellänge $I = I_0 x$
- ▶ Messung der Periodendauer T = f(x)

$$T_0(x) = 2\pi \sqrt{\frac{I}{g}} = 2\pi \sqrt{\frac{I_0 - x}{g}}$$

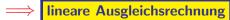
$$\Rightarrow$$
 Amplitudenkorrektur $\alpha = \arctan\left(\frac{a}{l}\right) \approx \frac{a}{l}$

Problem: $I = I_0 - x$ aber I_0 unbekannt

⇒ Linearisierung

$$T_0^2 = 4\pi^2 \frac{l_0}{g} - \frac{4\pi^2}{g} x = \theta_1 + \theta_2 x$$
$$\Rightarrow g = \frac{4\pi^2}{\theta_2} \text{ und } l_0 = \frac{\theta_1}{\theta_2}$$





Versuch F3 - Teil 2

weiteres Problem bei Bestimmung von g: Einfluss von $\mu \Rightarrow$ Funktion $T_0 = f(I)$ nichtlinear

- ► schrittweise Verkürzung der Pendellänge $I = I_0 x$
- ▶ Messung der Periodendauer T = f(x)

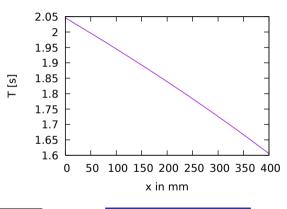
$$T_0(x) = 2\pi \sqrt{\frac{I}{g}} = 2\pi \sqrt{\frac{I_0 - x}{g}}$$

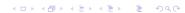
 \Rightarrow Amplitudenkorrektur $\alpha = \arctan\left(\frac{a}{l}\right) \approx \frac{a}{l}$

$$T(x) = 2\pi \left(1 + \frac{1}{16} \left(\frac{a}{l_0 - x}\right)^2\right) \sqrt{\frac{l_0 - x}{g}}$$

 \Rightarrow starrer Körper $\mu \neq 0$

$$T(x) = 2\pi \left(1 + \frac{1}{16} \left(\frac{a}{l_0 - x}\right)^2\right) \sqrt{\frac{l_0 - x}{g} \left(1 + \frac{\mu}{(l_0 - x)^2}\right)}$$





nichtlineare
Ausgleichsrechnung

Ausgleichsrechnung

Ausgangspunkt: Reihe von n Messwerten $\mathbf{y} = (y_1, y_2, \dots, y_n)$ die in Abhängigkeit von r nichtstochastischen Einflussgrößen $\mathbf{x}_i = (x_1, x_2, \dots, x_r)_i$ bestimmt wurden.

$$y_i = f(\mathbf{x}_i, \theta) + \varepsilon_i$$
 $i = 1, \dots, n$

 $m{arepsilon}$ $m{arepsilon}=(arepsilon_1,arepsilon_2,\ldots,arepsilon_n)$ sind die Abweichungen der Messwerte y_i

Es gilt:
$$E[\varepsilon] = 0 \implies E[y_i] = f(\mathbf{x}_i, \theta)$$

und: $Var[\varepsilon] = \sigma^2$ wobei σ^2 im allgemeinen unbekannt ist.

$$\sigma^2 \neq f(\mathbf{x_i})$$
, $\sigma^2 \neq f(y_i) \implies \sigma^2 = \text{const}$

- gesucht: Werte des Parametervektors $\theta = (\theta_1, \theta_2, \dots, \theta_p)$ und deren Kovarianzmatrix $Cov[\theta]$
- ▶ Methode der kleinsten Quadrate ⇒ Minimum der Summe der quadrierten Abweichungen

$$Q(\theta) = \sum_{i=1}^{n} (y_i - E[y_i])^2 = \varepsilon^T \varepsilon \qquad \frac{\partial Q(\theta)}{\partial \theta} = \mathbf{0}$$

lineare Regression

Linearkombination von p beliebigen, nicht notwendigerweise linearen Funktionen $f_j(\mathbf{x}_i)$

$$E[y_i] = f(\mathbf{x}_i, \theta) = \sum_{j=1}^{\rho} \theta_j f_j(\mathbf{x}_i) \qquad i = 1, \dots, n$$

Beispiele:

▶ Geradenausgleich ⇒ nur eine Einflussgröße, linearer Zusammenhang

$$E[y_i] = \theta_1 + \theta_2 \cdot x_i \qquad \qquad i = 1, \dots, n$$

Parametervektors $heta = (heta_1, heta_2)$

►
$$E[y_i] = \theta_1 + \theta_2 x_{1_i} + \theta_3 x_{2_i} + \theta_4 x_{1_i} x_{2_i} + \theta_5 x_{1_i}^2 + \theta_6 x_{2_i}^2$$
 $p = 6$ und $r = 2$

ightharpoonup Fourierreihe einer 2π -periodischen Funktion f(t) in Sinus-Kosinus-Form

$$E[y_i] = \frac{a_o}{2} + \sum_{k=1}^{m} (a_k \cos(k t_i) + b_k \sin(k t_i))$$
 $p = 2m + 1 \text{ und } r = 1$

ightharpoonup min $Q(\theta) \Longrightarrow$ direkte Lösung mit Matrizenalgebra

lineare Regression

Die p Funktionen $f_j(\mathbf{x}_i)$ und die n Messstellen \mathbf{x}_i bestimmen die Werte

$$a_{i,j} = f_j(\mathbf{x}_i)$$
 $i = 1, \dots, p$

 \Rightarrow $n \times p$ Design-Matrix

$$\mathbf{A} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,p} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,p} \end{pmatrix} \xrightarrow{\text{Geradenausgleich}} \mathbf{A} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}$$

⇒ einfache Matrizengleichnung ⇒ lineares Modell der mathematischen Statistik

$$\mathbf{y} = \mathbf{A} \; \theta + \varepsilon$$
 beziehungsweise $\mathrm{E}[\mathbf{y}] = \mathbf{A} \; \theta$

$$\Rightarrow \min Q(\theta) \Longrightarrow \widehat{\theta} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y} \text{ und } \widehat{\mathrm{Cov}}[\widehat{\theta}] = \widehat{\sigma^2} (\mathbf{A}^T \mathbf{A})^{-1} \text{ mit } \widehat{\sigma^2} = \frac{1}{n-p} \varepsilon^T \varepsilon$$

Gewichtung

- Voraussetzung gleicher Genauigkeit alle Messergebnisse nicht immer gegeben
- ▶ zu jedem Messwert wird ein entsprechendes Gewicht p_i festgelegt
- \implies Gewichtsmatrix $\mathbf{P} = \operatorname{diag}(p_1, p_2, \dots, p_n)$.

⇒ Summe der Abweichungsquadrate

$$Q(\theta) = \varepsilon^T \mathbf{P} \varepsilon = (\mathbf{y} - \mathbf{A} \theta)^T \mathbf{P} (\mathbf{y} - \mathbf{A} \theta) = \sum_{i=1}^n \sum_{j=1}^n (y_i - \mathbf{E}[y_i]) \rho_{i,j} (y_j - \mathbf{E}[y_j]) = \sum_{i=1}^n \rho_{i,i} (y_i - \mathbf{E}[y_i])^2$$

▶ aus min $Q(\theta)$ \Longrightarrow folgt:

$$\widehat{\theta} = (\mathbf{A}^T \mathbf{P} \mathbf{A})^{-1} \mathbf{A}^T \mathbf{P} \mathbf{y}$$
 und $\widehat{\operatorname{Cov}}[\widehat{\theta}] = \widehat{\sigma^2} (\mathbf{A}^T \mathbf{P} \mathbf{A})^{-1}$ mit $\widehat{\sigma^2} = \frac{1}{n-p} Q_{\min} (\widehat{\theta})$

Festlegung der Gewichte

- 1. manuell z.B verschiedene Messgeräte oder verschiedene Experimentatoren
- 2. aus Vorinformationen über die Unsicherheiten u_i
 - z.B. $u_i = u_{sysR}$ systematischer Restfehler des Messgerätes (Vielbereichsmessgeräte)
 - lacktriangleright die u_i werden als Vertrauensbereiche ([$\pm 1\sigma$] Intervalle) angenommen
 - $u_i = \sqrt{\frac{\sigma^2}{m_i}}$ mit $\sigma^2 = \text{const}$ und $m_i = \text{hypothetische Anzahl an Wiederholungen}$
 - \Rightarrow Gewicht $p_i = m_i = \frac{\sigma^2}{u_i^2} \propto \frac{1}{u_i^2} \Longrightarrow p_i = \frac{1}{u_i^2}$
 - der Varianzfaktor σ^2 legt fest, welcher Messwert das Gewicht **Eins** erhält der Varianzfaktor σ^2 ist im Allgemeinen unbekannt
- 3. aus experimentell bestimmten Messunsicherheiten u_i
 - ▶ u_i aus m_i Wiederholungen $y_{i,k}$ mit $k = 1, ..., m_i$ und Nutzung von \overline{y}_i Coviet: $n_i = m_i 1$

$$\implies$$
 Gewicht: $p_i = \frac{m_i}{\sigma_i^2} = \frac{1}{u_i^2}$

4. aus Kovarianzmatrix Σ der Messabweichungen $\varepsilon_i \Rightarrow$ Präzisionsmatrix $\mathbf{P} = \mathbf{\Sigma}^{-1}$

nichtlineare Regression

- ▶ nichtlineare Regression $E[y_i] = f(\mathbf{x}_i, \theta)$
- ▶ Es gelten alle Annahmen der linearen Regression

1.
$$\sigma^2 \neq f(\mathbf{x_i}), \sigma^2 \neq f(y_i) \implies \sigma^2 = \text{const}$$

- 2. Gewichtung mit Matrix P
- lacktriangledown min $Q(heta)\Longrightarrow\widehat{ heta}$ iterative Lösung z.B. mit Levenberg-Marquardt-Verfahren erfordert Startwerte für heta

Bedeutung von "reduced chi-square"

Minimiert wird die Summe der Abweichungsquadrate

$$Q(\theta) = \varepsilon^{T} \mathbf{P} \varepsilon = (\mathbf{y} - \mathbf{A} \ \theta)^{T} \mathbf{P} (\mathbf{y} - \mathbf{A} \ \theta) = \sum_{i=1}^{n} \sum_{j=1}^{n} (y_{i} - f(\mathbf{x}_{i}, \theta)) p_{i,j} (y_{j} - f(\mathbf{x}_{j}, \theta))$$

Wenn

- 1. $f(\mathbf{x}, \theta)$ linear in den Parametern θ ist,
- 2. mit $\mathbf{P} = \operatorname{diag}(p_1, p_2, \dots, p_n)$ mit $p_i = 1/u_i^2$ gewichtet wurde,
- 3. die $\left(\frac{y_i f(\mathbf{x}_i, \widehat{\boldsymbol{\theta}})}{u_i}\right)$ nach $\mathcal{N}(0, 1)$ normalverteilt sind

ist die Größe $Q\left(\widehat{\theta}\right)$ nach χ^2 verteilt mit (n-p) Freiheitsgraden.

Sind außerdem

- 4. die u; experimentell bestimmte Unsicherheiten der v; dann, und nur dann, kann
 - 1. $Q(\widehat{\theta})$ bzw. $\frac{1}{n-n}Q(\widehat{\theta})$ (reduced chi-square) für einen Anpassungstest genutzt und
 - 2. $\widehat{\sigma^2} \stackrel{\text{def}}{=} 1$ gesetzt werden.

In allen anderen Fällen gilt:
$$\widehat{\sigma^2} = \frac{1}{n-p} Q\left(\widehat{\theta}\right) \Longrightarrow \text{Varianz der Gewichtseinheit}$$

Unsicherheiten des Parametervektors θ

lacktriangle Unsicherheit (Konfidenzintervall) von $\widehat{ heta}_j$ wird durch die Wahrscheinlichkeit P bestimmt,

$$P(d_{min} < heta_j < d_{max}) = 1 - lpha$$
 mit dem Signifikanzniveau $1 - lpha$

mit der dieser im Intervall $d_{min} < heta_j < d_{max}$ liegt

$$\Rightarrow d_{min,max} = \widehat{\theta_j} \mp t_{n-p} (1 - \alpha/2) s_j \quad \text{mit} \quad s_j = \widehat{\operatorname{Var}[\widehat{\theta_j}]}^{1/2} = \left(\widehat{\operatorname{Cov}[\widehat{\theta}]}_{j,j}\right)^{1/2}$$

▶ $[\pm 1\sigma]$ Intervalle $\implies u_{\theta_j} = s_j$

Richtige Ergebnisse nur wenn statistisches Modell der Physik entspricht

Versuch F3 - Teil 2

- 1. Messung der Periodendauer (20 Perioden) für > 10 verschiedene Fadenlängen.
 - ► Verkürzung des Fadens in Schritten von 2 Ringmarken (1RM = 20mm).
 - Wiederholung der Messreihe (Verlängerung des Fadens, Schrittweite 2 Ringmarken)
 - $u_t = STD_t + u_{sysRest}$ mit STD_t aus F3 Teil 1
- 2. Auswertung als lineares Modell (ohne Korrektur mit μ)
 - Amplitudenkorrektur mit $T_0(x) = \frac{T(x)}{1 + \frac{1}{16} \left(\frac{a}{l_0 x}\right)^2}$ mit l_0 aus Teil 1

$$T_0^2(x) = 4\pi^2 \left(\frac{l_0}{g} - \frac{1}{g} x \right) = \theta_1 + \theta_2 x \Rightarrow \theta_1 = 4\pi^2 \frac{l_0}{g} \text{ und } \theta_2 = -4\pi^2 \frac{1}{g}$$

- indirekte Bestimmung von $g=-4\pi^2\frac{1}{\theta_0}$ und $l_0=-\frac{\theta_1}{\theta_0}$ (\Rightarrow allg.FFG)
- $u_{T_0} \approx \text{const aber } u_{T_0^2} = 2T_0u_{T_0} \Rightarrow \sigma \neq \text{const}$

$$\Rightarrow$$
 Gewichtung mit $p_i = \frac{1}{(2T_0.u_{T_i})^2} \propto \frac{1}{T_0^2}$

3. Auswertung als nichtlineares Modell ohne Gewichtung (Korrektur mit μ aus Teil 1)

$$t_{m}(x) = n \left[2\pi \left(1 + \frac{1}{16} \left(\frac{a}{l_{0} - x} \right)^{2} \right) \sqrt{\frac{l_{0} - x}{g} \left(1 + \frac{\mu}{(l_{0} - x)^{2}} \right)} \right] \quad \text{mit} \quad \theta_{1} = l_{0} \quad \text{und} \quad \theta_{2} = g$$

