Versuch Reversionspendel

Peter Schäfer peter.schaefer@physik.hu-berlin.de http://roe10.physik.hu-berlin/Grundpraktikum

Institut für Physik Structure Research & Electron Microscopy

22. März 2018

Inhalt

Vorbemerkungen

physikalische Grundlagen

Fehlerquellen

Weiterführende Informationen:

http://roe10.physik.hu-berlin.de/Grundpraktikum

https://poeple.physik.hu-berlin.de/~schaefer/Grundpraktikum

Grundsätzliches und Allgemeine Hinweise

Reproduzierbarkeit des Experimentes ⇒ Reproduzierbarkeit der Auswertung ↓

- ▶ Wiederholung der Auswertung muss zum gleichen Ergebnis führen
- Anwendung auf ähnliche Daten muss zu vergleichbarem Ergebnis führen
- der Ablauf der Auswertung muss nachvollziehbar und dokumentierbar sein

- Ausführliche Dokumentation aller Funktionen und Proceduren
- ▶ Möglichkeit zur Erstellung und Abarbeitung von Befehlslisten
- Fehlerfrei bzw. Dokumentation bekannter Fehler (Open Source)

Physikalische Grundlagen

mathematisches Pendel, Massepunkt $I \rightarrow Abstand Massepunkt$

$$T_0=2\pi\sqrt{\frac{I}{g}}$$

Massepunkt ⇒ starrer Körper

$$T_0 = 2\pi \sqrt{\frac{a}{g} \left(1 + \frac{\mu}{a^2}\right)} \quad \Leftarrow$$

Massepunkt \Rightarrow Kugel $\mu = \frac{2}{5}r^2$

$$\Downarrow$$

$$T_0 = 2\pi \sqrt{\frac{a}{g} \left(1 + \frac{2}{5} \frac{r^2}{a^2}\right)}$$

physikalisches Pendel, starren Körper a o Abstand Schwerpunkt

$$T_0 = 2\pi \sqrt{\frac{J_s + m a^2}{m a g}}$$

$$\downarrow \downarrow$$

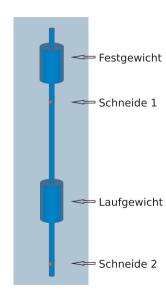
$$I_r = \frac{J_s + m a^2}{m a}$$

$$= \frac{\frac{J_s}{m} + a^2}{a}$$

$$\text{mit } \mu = \frac{J_s}{m}$$

$$= a + \frac{\mu}{a} = a \left(1 + \frac{\mu}{a^2}\right)$$

Das Reversionspendel



- Pendel mit 2 Schwingungsachsen (Schneiden) in einer Ebene, die den Schwerpunkt enthält
- Verschiebung des Laufgewichtes ändert Lage des Scherpunktes
 - 1. ändert Abstände a_1 und a_2
 - 2. andert Trägheitsmoment J_s bzw. μ
 - \implies ändert T_1 und T_2
- ▶ Wenn $T_1 = T_2$ (Reversionspendel), dann gilt:

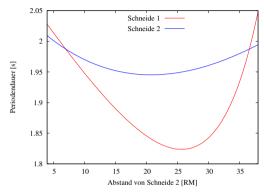
$$a_{1,2} = \frac{l_r}{2} \pm \sqrt{\left(\frac{l_r}{2}\right)^2 - \mu}$$

$$l_r = a_1 + a_2$$

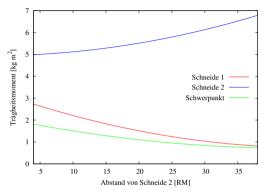
$$\mu = a_1 a_2$$

▶ Bestimmung des Schnittpunktes von $T_1(x)$ und $T_2(x)$

Bestimmung des Schnittpunktes durch Berechnung



- x-Achse Teilung Ringmarken 1RM = 20mm
- Zwei Schnittpunkte! Welcher ist besser geeignet?



- größere Trägheitsmomente bei $x \approx 7 \, \text{RM}$
- ► $x \approx 7 \, \text{RM} \implies a_1 \approx 0.33 \, I \text{ (Bessel 1826)}$
- \Rightarrow Arbeitspunkt bei $\approx 7 \, \text{RM}$

Mit vertretbarem Aufwand ist es nicht möglich, den Schnittpunkt exakt einzustellen.

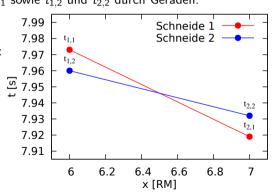
- ⇒ möglichst dichte Annäherung an den Schnittpunkt
- \implies Berechnung von T_s aus T_1 und T_2

Bestimmung des Schnittpunktes durch zweiseitige Annäherung

- Voraussetzung: auf jeder Seite des Schnittpunktes eine Position des Laufgewichtes, bei der sich die Periodendauern für beide Schneiden nur geringfügig unterscheiden.
- ▶ Verwendung der Sekanten anstelle der genauen Funktionen der Kurvenäste
- paarweises Verbinden der Punkte $t_{1,1}$ und $t_{2,1}$ sowie $t_{1,2}$ und $t_{2,2}$ durch Geraden. erster Index: Position des Laufgewichtes zweiter Index: Schneide.
- Schnittpunkt der Geraden ist gegeben durch:

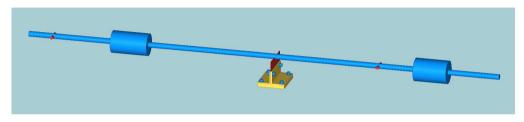
$$t_{s} = \frac{t_{1,1}t_{2,2} - t_{1,2}t_{2,1}}{t_{1,1} - t_{1,2} - t_{2,1} + t_{2,2}}$$

$$x_{s} = x_{1} + \frac{t_{1,1} - t_{1,2}}{t_{1,1} - t_{1,2} - t_{2,1} + t_{2,2}} (x_{2} - x_{1})$$



Bestimmung des Schnittpunktes aus der Lage des Schwerpunktes

Ermitteln der Schwerpunktslage durch Ausbalancieren ⇒ Abstand a₁



$$t^2 = \frac{t_1^2 a_1 - t_2^2 a_2}{a_1 - a_2}$$

erfordert Bestimmung beider Schwerpunktabstände

$$t^{2} = \frac{t_{1}^{2} + t_{2}^{2}}{2} + \frac{t_{1}^{2} - t_{2}^{2}}{2} \left(\frac{I}{2a_{1} - I}\right)$$

Fehlerquelle Amplitude

Amplitudenabhängigkeit der Periodendauer

$$T(lpha)pprox T_0\left(1+rac{lpha_0^2}{16}
ight)$$

- Dämpfung (Luftreibung, Reibung Schneide Auflage): zwei Effekte
 - 1. Änderung von $\omega^2=\omega_0^2-\delta^2$ (gemessen am Messplatz 2: $\delta\approx 2\cdot 10^{-4}s^{-1}$) für den Fall sehr kleiner Dämpfungen $\delta\ll\omega_0$ gilt:

$$T_{0_d} = T_0 \left(1 + \frac{\delta^2 T_0^2}{8 \pi^2} \right)$$

relative Änderung von $\Delta T < 2 \cdot 10^{-9}$ kann vernachlässigt werden.

2. Periodendauer von der Schwingungsamplitude abhängig \Rightarrow Funktion der Messzeit t. über n Perioden gemittelte Periodendauer T_n

$$T_n = T_0 \left(1 + rac{1}{16} \left(rac{lpha_0 + lpha_t}{2}
ight)^2
ight)$$

Fehlerquelle Luftauftrieb

Auftriebskraft greift am Volumenmittelpunkt an. Beim homogenen, asymmetrischen Reversionspendel fallen Massen- und Volumenmittelpunkt zusammen. Es gilt dann:

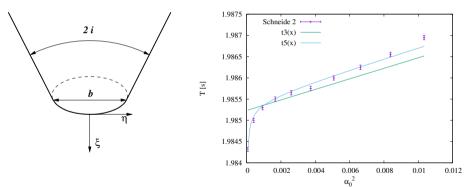
$$J_{a} \, \ddot{lpha} = -m \, g \, \, a \, \left(1 - rac{
ho_{L}}{
ho_{P}}
ight) \sin lpha$$

und wir erhalten für die gemessene Periodendauer:

$$T(lpha)pprox \mathcal{T}_0\left(1+rac{lpha_0^2}{16}
ight)\sqrt{rac{1}{1-rac{
ho_L}{
ho_P}}}pprox \mathcal{T}_0\left(1+rac{lpha_0^2}{16}+rac{1}{2}rac{
ho_L}{
ho_P}
ight)$$

Fehlerquelle Schneidenform

- allgemein: Schneide nicht ideal spitz, sondern verrundet. Annahme einer elliptischen Form
- ► Grenzfall: Schneide abgeplattet mit Breite *b*
- \Rightarrow Veränderte Amplitudenabhängigkeit $T(lpha_0)_cpprox T_0\left(1+rac{lpha_0^2}{16}-rac{b}{\pi\,\mathsf{a}\,lpha_0}
 ight)$



▶ Darstellung $T = f(\alpha^2)$ zeigt den Einfluss sehr deutlich